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ABSTRACT

Nonverbal cues such as gestures and facial expressions are indispens-
able in human communication. However, such an essential aspect of
social interactions is inaccessible to the sight impaired. This issue
can be alleviated with the assistance of augmented reality and affec-
tive computing techniques embodied as wearable technology. Even
though both augmented reality and affective computing have been
studied comprehensively, the real-life deployment and utilization of
these techniques are hindered by the limitations of wearable devices
in terms of computational capabilities and battery life. This calls for
a holistic approach to implementing lightweight and robust affec-
tive computing methods. In this study, we present a prototype that
combines facial expression and gesture recognition that is optimized
to function on battery-powered wearable devices. Additionally, the
prototype embodies a haptic sleeve that communicates the detected
facial expressions and gestures to the wearer.

Index Terms: CCS [Human-centered computing]: Accessibility—
Accessibility technologies; CCS [Human-centered computing]: Hu-
man computer interaction (HCI)—Interaction techniques CCS [Com-
puting methodologies]: Artificial intelligence—Computer vision

1 INTRODUCTION

Sight is arguably the most powerful human sense, and the role of
vision in human cognition has been acknowledged with expressions
deeply rooted in language and culture. One says “I see” to mean
“I understand”. Thus, it is not surprising to see that mainstream
research on Augmented Reality (AR) focuses almost exclusively on
advanced visualization. Nevertheless, the broader definition of AR
also covers the augmentation of other senses.

A large component of human communication consists of nonver-
bal cues such as facial expressions, gestures, and body language.
Unfortunately, such an essential part of human social interactions is
inaccessible to the sight impaired. This issue can be partially allevi-
ated with the assistance of AR backed by wearable technologies and
artificial intelligence.

The technical aspect of this problem can be broken down into
three parts. First, the capturing of the images toward the direction
faced. Second, the detection of the target individual, and the recog-
nition of nonverbal cues. Third, the conveying of the detected cues
by means of sensory augmentation. The real-life implementation
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Figure 1: Conceptual representations of the proposed interaction
system

of such solution approaches faces several challenges; the compu-
tational capability and battery-life of mobile devices are limited,
and movement of the wearable camera makes it difficult to analyze
the video stream to recognize nonverbal cues. To overcome these
challenges, a holistic engineering approach is required.

This work-in-progress study addresses the design and develop-
ment of affective computing models for detecting a variety of facial
expressions and gestures of an individual: smile, frown, eyebrow
raise, head nod, and head shake. Additionally, the integration with
two sensory augmentation techniques is discussed and noted as fu-
ture work. Fig. 1 depicts the overall conceptual representation of the
proposed system.

The remainder of this paper is structured as follows: Section
2 highlights important literature on AR and affective computing.
Section 3 describes the details of the prototype design. Section 4
covers a discussion on the interesting engineering challenges posed
by the real-life implementation of AR and affective computing.
Finally, section 5 concludes the paper.

2 AUGMENTED REALITY AND AFFECTIVE COMPUTING

Affective computing aims at understanding and developing the tech-
nology that is capable of detecting, interpreting, and responding
to human affect [20]. Human affect covers complex phenomena
regarding the perception and manifestation of mood and emotions in
humans. Felt affect goes hand in hand with observable physiological
signals. Approaches for automatically recognizing human affect sig-
nificantly differ based on the type of observed signals. For example,
Face Expression Recognition (FER) models examine facial features
to classify the displayed expressive cues on the human face [21].
Speech Emotion Recognition (SER), on the other hand, analyzes the



tone and content of human speech [2]. Moreover, Gesture Recogni-
tion (GR) attempts to detect gestures based on the nonverbal cues
displayed by a variety of body parts such as hands and the head.

With the advances in artificial intelligence over the last decade,
many novel approaches to recognizing human affects have been
developed. FER domain primarily benefited from Convolutional
Neural Networks (CNN) that were originally designed to address
computer vision problems [12]. On the other hand, SER has been
traditionally tackled using Recurrent Neural Networks (RNN) due
to their ability to model long-range emotional context [11] while GR
implementations mostly used Hidden Markov Models (HMM) and
finite state machines [5].

Empowered by better datasets and advanced algorithms and ar-
chitectures, recent studies on affective computing report promising
results in terms of model performance and interoperability [22].
However, characteristics that are crucial to the deployment and real-
life utilization of technology, such as model complexity and size,
are often overlooked. This introduces a problem in the deployment
of models that need to work on devices with limitations in terms
of capability and connectivity. For instance, due to the limitations
of battery and computation capabilities, running complex machine
learning models on wearable devices is challenging [19].

Technologies that aim at assisting the sight-impaired in daily life
comprise AR solutions that work on mobile and wearable devices.
Such AR solutions primarily entail sensory substitution wherein
auditory and haptic senses partially replace the function of sight.
Several studies address the navigation problem [6, 18]. For instance,
Albouys-Perrois et al. have designed a multisensory map to support
individuals with low vision using tactile and audio feedback [1]. Liu
et al. proposed a cognitive assistant that helps in navigation, obstacle
avoidance, and scene formulation by means of replacing the visual
sensory inputs with auditory ones [13]. Other examples are a simple
mobile application that recognizes the objects on the camera feed
and produces an audio output that names the object [15] as well as
a system that recognizes obstacles using a 3D wearable camera on
glasses and transmits the gathered information thought vibrations
on a haptic feedback sleeve [23].

AR has also been used to support individuals with limited sight in
their social interactions by visually enhancing some of the facial ex-
pressions of their hypothetical conversation partners [10]. McDaniel
et al. used a haptic belt that informs the wearer regarding the direc-
tion and distance of the individuals within the visual field [17]. Such
functionality is complementary to our proposed solution provided
that it is extended to operate in 360 visual field, in order to inform
the user about the location of potential conversation partners. In a
more recent study, researchers implemented a prototype that uses a
haptic belt to convey the inferred facial emotions [3]. This approach
does not consider the context of the conversation. Thus, it runs the
risk of misinforming the user about the inferred emotions.

Our approach differs from the solutions available in the existing
literature in multiple ways, thereby making a contribution. First,
instead of inferred emotions, our prototype provides the user with
information about the detected gestures and facial expressions. The
user has the flexibility to interpret the provided information based on
the context of the conversation. Second, our GR model detects the
rotation of facial landmarks instead of absolute spatial displacement.
Thus, it is robust against the movements of the head-mounted camera
that the user wears. Third, by using lightweight GR and FER models,
the computational complexity is reduced. The combination of such
lightweight models with adaptive conversation mode addresses the
real-life challenge regarding the battery an computation limitations
of wearable technologies.

3 PROTOTYPE DESIGN

In this study, we designed a prototype in the form of a wearable
device that aims at assisting visually impaired individuals in recog-

Figure 2: The process of the prototype operation

nizing nonverbal cues during their social interactions. We considered
the limitations imposed by wearable technologies and optimized the
model performance and complexity accordingly. The prototype com-
prises three components: image capture, affect modeling, and AR
feedback as depicted in Fig. 2.

3.1 Image capture
The hardware elements of the image capture component are a camera
mounted on a pair of glasses and a mobile computation unit. The
camera is positioned toward the direction faced by the wearer. The
images that are captured by the camera are transmitted to the mobile
computation unit. In this study, we used a Raspberry Pi 4 with
4GB memory and a Logitech C270 HD 720p webcam. The camera
was configured to operate at 30 frames-per-second and 640x480
resolution.

3.2 Affect modeling
Affect modeling component processes the images it receives from
the camera. First, the face detection module analyzes the video
stream one frame per second in search of a face. If a face is detected
and it remains relatively close to the center of the frame for more
than several seconds, the conversation mode is activated. If the face
disappears or moves outside the center of the frame, the conversation
mode is deactivated. Alternatively, the conversation mode can be
switched on and off manually by the user. This provides flexibility
when the user does not face the conversation partner directly or
prefers not to use the system at all. FER and GR only work in
conversation mode. In case there is more than one face in the frame,
only the one that appears the closest to the camera and the center
of the image is selected. Subsequently, the face detection model
extracts facial landmarks; a (68x2) vector of coordinates. For face
and facial landmarks detection, dlib is used [8]. Consecutively, the
detected face image and landmarks are handed over to the GR and
FER models that run simultaneously.

GR model detects two gestures; head nods and head shakes.
These gestures are defined based on the rotational movements of
three facial landmarks; 1: right ear, 2: nose center, and 3: left ear
(see Fig. 3). Vertical rotation movements with alternating directions
within a short time interval (e.g., two seconds) indicate a head nod.
Vertical rotation movement is characterized by nose displacement
that is significantly higher or lower than the average displacement
of both ears. Similarly, rapid horizontal rotation movements with
alternating directions indicate a head shake. Horizontal rotation
movement is characterized by a simultaneous opposite change of
two distances; d1: left ear to nose center, d2: right ear to nose
center. To detect rapid vertical and horizontal rotation movements
effectively, GR requires operating at 15 frames per second.

FER model recognizes three facial expressions; smiling, frowning,
and raised eyebrows which are commonly associated with affective
states of joy, anger/frustration, and surprise respectively. FER is
performed based on the detection of facial muscle movements, i.e.,
Action Units (AU) [4]. Specifically, the presence of AU6: Cheek
Raiser and AU12: Lip Corner Puller indicates smiling; AU4: Brow
Lowerer hints at frowning, and AU1: Inner Brow Raiser and AU2:
Outer Brow Raiser specify raised eyebrows.



Figure 3: Screenshot of GR and FER model in action

We designed a shallow CNN to detect the AUs, consisting of four
convolutional layers with 32, 32, 64, and 64 filters respectively, and
the ReLU activation function. A max-pooling layer followed the first
three layers with a 2×2 filter, and the last one by a flatten layer. The
final two layers are fully connected. The first fully-connected layer
has 256 neurons, while the second has 12 sigmoid units representing
the predictions of the 12 target AUs. We used a binary cross-entropy
loss function and the Adam Optimizer. For training and testing
the CNN, we gathered sample data from CK+ [14] and DISFA
[16]; databases that consist of AU-labeled facial imagery. These
databases include diverse imagery data in terms of age, gender,
and ethnicity. CK+ has 593 videos from 123 participants, where
each video sequence is the facial shift from a neutral expression
to a targeted peak expression. We added the images that show the
peak expression to our sample data. DISFA contains four-minute
videos from 27 participants. From this data source, we sampled four
positive and four negative images per AU, having 2,377 instances.
The final set had 2,970 AU-labeled images. We performed stratified
sampling with 2,376 as training and 594 as testing data.

We tested the trained CNN model on the allocated test set which
yielded an average F-1 score of 77.12. Specifically, the classification
performance on the individual AUs was 77.13 and 80.54 for AU6
and AU12 which indicate smiling, 75.08 for AU4 which indicates
frowning, and 73.10 and 79.73 for AU1 and AU2 which are related
to raised eyebrows.

The algorithmic complexity of both GR and FER are constant.
The size of the FER model weights is 13.5MB, and it takes 0.08
seconds to initialize the model. The preprocessing of a detected
face and facial expression inference approximately takes 0.09 and
0.04 seconds respectively. The GR does not require initialization
and it takes 0.09 seconds to analyze one image frame. The software
implementation uses separate threads to run GR and FER which
enables the entire system to operate fluently.

3.3 AR feedback

The prototype is capable of providing feedback via two alterna-
tive sensory augmentation methods; haptic and auditory. The hap-
tic feedback device is a sleeve that contains a set of 24 Tectonic
TEAX09C005-8 [9] vibration motors in a grid (see Fig. 4). These
motors emit distinct patterns over the surface of the forearm. After
undergoing a training process to learn which patterns correspond to
the aforementioned gestures and facial expressions, the wearer can
interpret the haptic feedback.

The auditory feedback method uses standard headphones. It emits
sounds that indicate when the system enters conversation mode.
However, auditory feedback runs the risk of causing information
overload and confusing the user because the spoken conversation
also takes place in the auditory channel.

Figure 4: The vibration motor array of the prototypical haptic sleeve

4 DISCUSSION

The holistic implementation of AR, GR, and FER as wearable tech-
nology poses interesting engineering challenges some of which are
discussed in this section.

Wearable technologies that rely on computer vision embody a
camera that is mounted on the head or shoulder of the user. This
means the camera is not stationary and that it moves due to the body
movements of the wearer. FER models use single frames to detect
expressions. Thus, the movement of the camera does not pose a
serious challenge. However, GR requires a series of consecutive
frames and therefore it is potentially hindered by a moving camera.
In our design, we developed a novel GR technique that formulates
the vertical and horizontal rotational movement of the head using
the relative distances of facial landmarks. Thus, our design is robust
against the effects of changes in the camera position.

Mobile wearable devices require a battery to operate, and ev-
ery computation drains the battery. Thus, avoiding unnecessary
computation is essential to an effective and efficient design. In our
prototype design, FER and GR are only required to operate when
the user is engaged in a conversation with a partner. Thus, we imple-
mented the conversation mode which is activated either manually by
the user or once a face is detected in front of the camera and stays
there for a while. In doing so, unnecessary FER and GR computation
is avoided which considerably improves the battery life. Moreover,
due to the simplicity of the used architecture, the FER model is
lightweight. While this positively impacts the computational ef-
ficiency and battery consumption it potentially compromises the
accuracy. The optimization of computation efficiency and accuracy
needs to be studied further.

Another interesting challenge is the communication of detected
gestures and facial expressions to the user. By design, GR and FER
continuously provide data on the detected nonverbal cues. Such a
flow of data may cause information overload and distract the con-
versation. To alleviate this challenge, time series smoothing and
aggregation techniques need to be used to simplify the communi-
cated message.

This study has theoretical and practical implications. Existing
research mostly focuses on individual topics, such as AR, GR, or
FER. On the other hand, this study describes a holistic design that
combines all three together. Additionally, it addresses several engi-
neering problems that are faced in the real-life utilization of such
technologies, explores the potential bottlenecks and integration chal-
lenges, and demonstrates approaches to overcome them. Further-
more, the prototype demonstrates that such a system has the potential
to improve the life quality of sight-impaired individuals by enabling
them to perceive nonverbal cues which are a crucial part of human
communication.



5 CONCLUSION

In this paper, we introduce a prototypical AR system that aims at
assisting the visually impaired to perceive the nonverbal cues of their
conversation partners. The prototype comprises FER and GR models
that are optimized to function on a battery-powered wearable device.
This work differentiates itself from existing research by considering
the computation and battery limitations of wearable devices and
optimizing the model complexity and performance accordingly.

This paper presents a work in progress and therefore it is not
without limitations. Even though the prototype has been tested, a
scientific evaluation with the users is yet to be conducted. Also, our
design decisions favored the simplest of models to decrease com-
plexity and computational load. For instance, we used a primitive
CNN architecture to promote lightweight model operation. Our
observations indicate that wearable technologies could afford to
operate more complex architectures that potentially yield improved
accuracy.

We have clear goals for future work. First, we will thoroughly
evaluate the components of the prototype. FER and GR need to
be tested in both controlled and in-the-wild conditions, e.g., under
different light conditions, and various usage scenarios. Second,
we will conduct experiments with sight-impaired participants and
evaluate the prototype comprehensively. Third, the mapping between
the detected nonverbal cues and haptic feedback patterns needs to
be further studied and evaluated in terms of user perception and ease
of learning. Finally, we plan to benchmark various configurations of
the prototype and measure and report complexity and accuracy to
explore and highlight the optimal settings.
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